因为初中学习和小学学习知识层次、难度和学习方法的不同,在小升初后进入初中的同学们,肯定会遇到很多问题。那么,初中数学学习必然会遇到哪些问题呢?面对这些问题,该如何解决呢?
第一,学习方法方面的问题。表现在:
(1)做几何题时候不会做辅助线
原因:对于几何模型认识不充分
解决方案:每一种基本的几何模型都有定义、性质和判定三方面,要将这三方面知识熟记于心。一般来说应用的过程是:判定是哪种模型此模型有何性质此性质能不能直接用若不能,则作辅助线体现其性质。例如:暑假学的平行四边形模型对角线互相平分,对边平行且相等,对角相等。等腰三角形模型三线合一。倍长中线模型有三角形一边中点,可以考虑倍长中线构造全等。还有梯形的的三类辅助线,都应该熟记。
(2)考虑问题不全面,不会进行分类讨论
解决方案:
1、注意几种经常需要分类讨论的知识点,就初二暑假的知识点而言,函数自变量取值的范围,一次函数的k,b的正负性,平方根的双重性,直角坐标系中点的坐标与线段长度的转化等等。
2、学会讨论方法,把每一种情况都写下来,然后分别解出每种情况下的结果。
3、注意分类之后的取舍,并不是所有情况都是正确答案,尤其是解分式方程和根式方程的时候,会出现增根,一定要检验。
(3)自信心不足,不敢下手
原因:
1、对于题型本身掌握不好,没思路;
2、有些想法,不知道是否正确,不敢动笔;
3、不会写过程;
4、会做,懒得写。后果:导致考试比作业还差。
解决方案:
1、问老师、对比类似的例题寻找相同之处;几何先找模型,在思考此种模型的性质特点以及辅助线做法。代数看过程,分析每一步的目的;
2、有想法一定要落实在笔头上。怕错写在草稿纸上,视觉带给我们的思路远比空想要多;
3、上课认真记笔记,将老师的解题过程详细的记录在本上,几何有模型,代数有步骤。多模仿老师的解题过程,慢慢熟练;
4、会做不代表能做对,很多题目的易错点只有在做后才会发现。很多丢分的题目往往是那些一看就会一坐就错的简单题;
5、有时候解题方法不是一下子就能想出来的,一步就能想出来,那就是完美主义理想。所以在没有明确思路的情况下,我们可以多尝试,一定可以找到正确的思路方式。
第二,学习习惯的方面的问题
(1)喜欢用铅笔
后果:过于依赖铅笔,习惯于没想好就下笔,导致考试时多次使用修改,卷面凌乱。当没有可涂改工具是不敢下笔写。
解决方案:除了画图,其他一律使用签字笔书写。除了笔误,由于思路不清或是方法错误导致的失误尽量不要用涂改带修改,标明错误,在一旁写下正确答案。一来,养成慢想快写的好习惯二来可以保留错误作为警戒,三来,强制自己的行文工整,否则会一团糟。
(2)几何题用签字笔或圆珠笔在图上标注
后果:原图被涂改的一团糟,什么都看不清。
解决方案:改用铅笔画图,学会科学的标注相等的线段,相等的角,辅助线用虚线等等。
(3)看见题目,急于下手,结果思考不出来
解决方案:这个时候同学们再读几遍题目,尤其是几何题,综合题。看清题目的已经条件,转化成自己理解的方式,同时将已知条件标注到图上。
(4)计算粗心
解决方案:
1、解题时,严格按照步骤进行,写出详细过程;
2、做题要规范;对于易混、易错的知识要善于总结、积累,从而有针对性的进行练习。
第三,学习态度方面的问题
(1)简单题不愿做,难题不会做
原因:浮躁。后果:在初二初三的学习会直线下降。
解决方案:强迫自己认真完成每一道自己会做的题,认真思考每一道自己不会的题。保证会做的最对,不会的问会。毕竟,学习是自己的事情,学不好,最着急的是自己。记住,不要放弃。
(2)做题不写过程
后果:
不会写过程;
考试没有过程分;
思考不严谨,导致做错或遗漏答案;
难题没思路。
解决方案:将思考的事情写成文字,用数学语言表述自己的思维过程。每一个步骤从何而来,有何作用,写在纸上才能看得清清楚楚。同时,锻炼书写能力以及适当的排版都是对考试有所帮助的。简单题多梳理思路,遇到难题才不会手忙脚乱,按部就班的分块解决每一部分,多锻炼思维的逻辑性才能做到目无全牛,条理清晰。
(3)自我放弃
解决方案:这类型的同学主要是在数学学习中没有找到自我成就感,在这种情况下要学好数学,就需要自身努力,相信自己,但家长和老师的鼓励也是非常重要的。