重庆查字典中考网讯:小编给大家整理了初一初二数学提高系列资料,如有需要,请自行下载!
初一数学资料 地址链接七年级上学期数学提高系列之一(有理数) 下载
点击查看
七年级上学期数学提高系列之二(整式的加减) 下载
点击查看
七年级上学期数学提高系列之三(一元一次方程) 下载
点击查看
七年级上学期数学提高系列之四(图形认识初步) 下载
点击查看
七年级上学期数学提高系列之衔接篇 下载
点击查看
初一数学资料 地址链接 八年级上学期数学提高系列之一(全等三角形) 下载点击查看
八年级上学期数学提高系列之二(轴对称) 下载点击查看
八年级上学期数学提高系列之三(实数) 下载点击查看
八年级上学期数学提高系列之四(一次函数) 下载点击查看
八年级上学期数学提高系列之五(整式的乘除与因式分解) 下载点击查看
有理数
资料下载请点击!!
整数和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零3种数。由于任何一个整数或分数都可以化为十进循环小数,反之,每一个十进循环小数也能化为整数或分数,因此,有理数也可以定义为十进循环小数。有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。有理数的大小顺序的规定:如果a-b是正有理数,就称a大于b或b小于a,记作ab或b
整式的加减
资料下载请点击!!
整式的加减
同类项合并同类项去括号法
则添括号法则合并同类项法
则整式的加减法法则
同类项的识别
合并同类项的技巧
化简多项式的步骤
1.整式的加减
2.同类项合并同类项去括号法
3.添括号法则合并同类项法
4.整式的加减法法则
5.同类项的识别
6.合并同类项的技巧
7.化简多项式的步骤
一元一次方程
资料下载请点击!!
只含有一个未知数(即元),并且未知数的最高次数为1(即次)的整式方程叫做一元一次方程(英文名:linear equation with one unknown)。一元一次方程的标准形式(即所有一元一次方程经整理都能得到的形式)是ax+b=0(a,b为常数,x为未知数,且a0)。求根公式:x=-b/a。
方程特点
(1)该方程为整式方程。
(2)该方程有且只含有一个未知数。
(3)该方程中未知数的最高次数是1。
满足以上三点的方程,就是一元一次方程。
判断方法
要判断一个方程是否为一元一次方程,先看它是否为整式方程。若是,再对它进行整理。如果能整理为 ax+b=0(a0)的形式,则这个方程就为一元一次方程。里面要有等号,且分母里不含未知数。
变形公式
ax=-b(a,b为常数,x为未知数,且a0)
通常解法
去分母去括号移项合并同类项系数化为1。
两种类型
(1)总量等于各分量之和。将未知数放在等号左边,常数放在右边。如:x+2x+3x=6。
(2)等式两边都含未知数。如:300x+400=400x,40x+20=60x。
图形认识初步
资料下载请点击!!
一、 直线、相交线、平行线
1.线段、射线、直线三者的区别与联系 从图形、表示法、界限、端点个数、基本性质等方面加以分析。
2.线段的中点及表示
3.直线、线段的基本性质(用线段的基本性质论证三角形两边之和大于第三边)
4.两点间的距离(三个距离:点-点;点-线;线-线)
5.角(平角、周角、直角、锐角、钝角)
6.互为余角、互为补角及表示方法
7.角的平分线及其表示
8.垂线及基本性质(利用它证明直角三角形中斜边大于直角边)
9.对顶角及性质
10.平行线及判定与性质(互逆)(二者的区别与联系)
11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。
12.定义、命题、命题的组成
13.公理、定理
14.逆命题
二、三角形
1.定义(包括内、外角)
2.三角形的边角关系:
⑴角与角:
①内角和及推论;
②外角和;
③n边形内角和;
④n边形外角和。
⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。
⑶角与边:在同一三角形中,
3.三角形的主要线段
讨论:①定义②线的交点三角形的心③性质 ① 高线②中线③角平分线④中垂线⑤中位线 ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形
4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质
5.全等三角形 ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS) ⑵特殊三角形全等的判定:①一般方法②专用方法
6.三角形的面积 ⑴一般计算公式⑵性质:等底等高的三角形面积相等。
7.重要辅助线 ⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线
8.证明方法
⑴直接证法:综合法、分析法
⑵间接证法反证法:①反设②归谬③结论 ⑶证线段相等、角相等常通过证三角形全等
⑷证线段倍分关系:加倍法、折半法 ⑸证线段和差关系:延结法、截余法 ⑹证面积关系:将面积表示出来
衔接篇
资料下载请点击!!
初中数学与小学数学的侧重点是不同的。小学数学侧重是打下数学的基础。因此,其内容主要是数、数与数之间的关系;各种量与计量的方法;各种基本运算、基本的数量关系;基本的图形认识及简单的周长、面积与体积计算;以及简单的代数知识等。 初中数学则侧重于培养学生的数学能力,包括计算能力、自学能力、分析问题与解决问题的能力、抽象逻辑思维的能力等。在内容上增加了复杂的平面几何知识,系统学习代数知识,运用方程解决实际问题;数扩展到有理数、实数;还有简单的一次函数与二次函数。
全等三角形
资料下载请点击!!
能够完全重合的两个三角形叫做全等三角形,而该两个三角形的三条边及三个角都对应相等。全等三角形是几何中全等的一种。是一个三角形通过平移,旋转或翻折后得到的新图形与这个图形全等。正常来说,验证两个全等三角形一般用边边边(SSS) 边角边(SAS) 角边角(ASA) 角角边(AAS) 和斜边,直角边(HL)来判定。 SSS同时否定AAA和ASS。
性质
1.全等三角形的对应角相等
2.全等三角形的对应边相等
3.能够完全重合的顶点叫对应顶点
4.全等三角形的对应边上的高对应相等。
5.全等三角形的对应角的角平分线相等。
6.全等三角形的对应边上的中线相等。
7.全等三角形面积和周长相等。
8.全等三角形的对应角的三角函数值相等。
判定过程
在第一行写要进行判定全等的两个三角形;
第二行画大括号,分别写判定的三个条件,并注明理由:
四种理由:
1.公共边;2.已知;3.已证;4.公共角;
最后一行,写两个三角形全等并注明理由.(如右图)(不严格要求写理由)
(若为直角三角形,在第二行须先写明两个直角相等并为90度,再写两个斜边、直角边分别相等)。
(例:RT△xxx与RT△xxx)
(提示:线段的垂直平分线上的一点到线段的两个端点的距离相等)
轴对称
资料下载请点击!!
如果沿某条在正中的直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴。对称轴绝对是一条直线。
如果一个函数图象关于一条直线x=a对称,那么它满足f(a-x)=f(a+x);或f(x)=f(2a-x)。
圆是轴对称图形,直径所在的直线是圆的对称轴,圆有无数条对称轴。
实数
资料下载请点击!!
包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。本来实数仅称作数,后来引入了虚数概念,原本的数称作实数意义是实在的数。(任何实数都可在数轴上表示。)
实数可以分为有理数和无理数两类,或代数数和超越数两类,或正实数,负实数和零三类。实数集合通常用字母 R 表示。而R^n表示 n 维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n为正整数,包括整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
1)相反数(只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数) 实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。)
2)绝对值(在数轴上另一个数与a到原点0的距离分别相等) 实数a的绝对值是:|a|
①a为正数时,|a|=a(不变)
②a为0时, |a|=0
③a为负数时,|a|=-a(为a的相反数)
(任何数的绝对值都大于或等于0,因为距离没有负的。)
3)倒数(两个实数的乘积是1,则这两个数互为倒数) 实数a的倒数是:1/a (a0)
4)数轴(任何实数都可在数轴上表示。)
定义:如果画一条直线,规定向右的方向为直线的正方向,在其上取原点O及单位长度OE,它就成为数直线,或称数轴。
(1)数轴的三要素:原点、正方向和单位长度。
(2)数轴上的点与实数一一对应。
5)平方根(某个自乘结果等于的实数,表示为〔 ̄〕,其中属于非负实数的平方根称算术平方根。一个正数有两个平方根;0只有一个平方根,就是0本身;负数没有平方根。)
6)立方根(如果一个数x的立方等于a,即x的三次方等于a(x^3=a),即3个x连续相乘等于a,那么这个数x就叫做a的立方根(cube root),也叫做三次方根)
一次函数
资料下载请点击!!
在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k为一次项系数k0,b为常数),那么我们就说y是x的一次函数,其中x是自变量,y是因变量。
一般地,形如y=kx+b(k0,k,b是常数),那么y叫做x的一次函数。当b=0时,y=kx+b即y=kx,即正比例函数(自变量和因变量成正比例)。所以说正比例函数是一种特殊的一次函数。
还有,若自变量最高次数为1,则这个函数就是一次函数。
在某一个变化过程中,设有两个变量x和y,如果可以写成y=f(x),(即x经过某种运算得到y),即每一个x都有唯一一个y与之对应,那么我们就说y是x的函数,其中x是自变量,y随X的变化而变化。当x取一个值时,y有且只有一个值与x对应。如果有2个及以上个值与x对应时,就不是函数。
整式的乘除与因式分解
资料下载请点击!!
单项式的除法
单项式相除,把它们的系数相除,同底数幂的幂相减,作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。
多项式除以单项式
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
单项式除以多项式,用多项式先除以单项式的每一项,再将所得的商相加,合并同类项后取倒数。注意:是整个多项式取倒数,而不是每一项分别取倒数后合并。
因式分解定义:把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式)。
分解因式与整式乘法为相反变形。
同时也是解一元二次方程中因式分解法的重要步骤。
因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法,十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。
注意原则:
1.分解要彻底(是否有公因式,是否可用公式)
2.最后结果只有小括号
3.最后结果中多项式首项系数为正(例如:-3x2+x=x(-3x+1))不一定首项一定为正,如-2x-3xy-4xz=-x(2+3y+4z)
衔接篇
方程特点
(1)该方程为整式方程。
(2)该方程有且只含有一个未知数。
(3)该方程中未知数的最高次数是1。
满足以上三点的方程,就是一元一次方程。
判断方法
要判断一个方程是否为一元一次方程,先看它是否为整式方程。若是,再对它进行整理。如果能整理为 ax+b=0(a0)的形式,则这个方程就为一元一次方程。里面要有等号,且分母里不含未知数。
变形公式
ax=-b(a,b为常数,x为未知数,且a0)
求根公式
通常解法
去分母去括号移项合并同类项系数化为1。
两种类型
(1)总量等于各分量之和。将未知数放在等号左边,常数放在右边。如:x+2x+3x=6。
(2)等式两边都含未知数。如:300x+400=400x,40x+20=60x[1]。