2011年中考数学审题及知识链的重要性_经验技巧-查字典中考网
 
请输入您要查询的关键词
您现在的位置中考网 > 中考备考 > 经验技巧 > 正文

2011年中考数学审题及知识链的重要性

发布时间:2011-05-09 09:26:36来源:查字典-中考网

很多同学拿来一道题就开始从已知往后推,推到死胡同时就返回来再找另一条路,多数情况下另一条路也是悬崖峭壁,然后翻来覆去的想应该怎么做。导致这种情况的原因就是,同学们审题不仔细。

看一道题,要像看一个人一样,人家刚买了一件新衣服,你见面就夸人家的旧裤子多么多么漂亮,这是肯定不行的。看题时,要从已知条件出发,看一下已知条件中的那些条件是题眼,是为我们提供思路的关键。事实上,这种能力一是建立在一定的做题量的基础上,更重要的是对于基础知识的理解和把握,这也是我一贯强调的。基础扎实,能够灵活运用,再加上适当总结,随便拿来一道题,读完题,能用到的方法也就出来了。

下面举个例子说明如何从题目中分析出来做题的方法。同学们在做题当中经常会遇到比较两条线段长度的问题。这类问题我在教学过程中喜欢让学生们猜答案。因为这种猜测是建立在认真读题的基础上的。请比较线段AB和CD的数量关系和请比较线段AB和CD的大小这两个问题看似一样,但是一般的问数量关系得到的往往是等式,即AB=CD或AB=1/2CD等等,问大小关系得到的有可能是等式也有可能是不等式,若是等式,多数情况是以1:1相等的情况出现即AB=CD,当然,还要配合具体的题目图形。因此我会告诉学生,问题提问的形式,往往也会不经意间透露出一些答案。

上面只是一些小技巧,接下来我们读完题开始找思路。比较线段的大小关系的问题,通常有四种情况

(1)a》b;

(2)a+b》c;

(3)a+b》c+d;

(4)a+b+c》d。(《的情况同理)

思路从何而来,从基础知识而来。那么首先我们要回想在初中阶段都学过什么关于线段长度的定理,每条定理后面又有什么知识点呢。我们一起看一下:

1、垂线段最短

直角三角形中斜边大于直角边

2、两点之间线段最短

三角形两边之和大于第三边

三角形中两边之差小于第三边

八字形与飞镖模型

2011年中考数学审题及知识链的重要性1

在八字形中,AB+CD《AD+CB,在飞镖模型中AB+AD》BC+CD,注意,这两个模型的结论不能够直接使用,但是可以为我们的求证提供一个良好的思路。

知识点回忆完了,我们接下来看问题,如果是(1)中的情况,我们首先想到的是1的方法,就是运用直角三角形斜边大于直角边,如果发现所给的两条线段不在同一个直角三角形中,那么就要想到的通过平移或构造平行四边形,将两条线段放到同一个直角三角形中来解决问题。如果1中的方法比较麻烦,这时我们要能想到把问题转化成(2)的类型,运用2的方法来解决。这种方法就是我们常说的截长补短,把较长的一条线段拆成两条,让这两条线段和剩下的那一条线段构成三角形,运用三角形两边之和大于第三边来解决,同样,如果这几条线段不在同一个三角形内,要想办法通过平移或构造平行四边形将他们放在一起。这里需要注意,经常用到的还有一个方法,就是截取较长线段,通过全等或其他方法证明其中某一段等于原先那条较短的线段,这里用的实际上就是小学的比较大小的方法。

如果是(2)的情况一般的,直接运用2的方法来解决,即将三条线段放到同一个三角形中去。在某些情况下也可以通过构造全等三角形或者平移,将两条线段合并回归到1的方法中去。

如果是(3)的情况,可以通过合并线段,转化为(2)或(1)的问题进行解答,也可以构造飞镖模型与八字形,通过已知模型四条线段之间的关系进行辅助线的添加,从而求证。

如果是(4)的情况,一般的通过合并线段转化为(2)(1)的问题进行解答。

问题全面的分析完了,这些都仅仅是从问题入手来得出的方法,如果再配合条件,能够进一步明确方法。一般的,这种问题辅助线的画法有很多,求证的方法也会多种多样,因此在平常做题的时候不放每种方法都尝试一下,为自己多沉淀些解题思路。

最后,祝愿大家再最后的几十天里,再加吧劲,取得更好的成绩!

查看全部
推荐文章
猜你喜欢
附近的人在看
推荐阅读
拓展阅读
相关推荐
猜你喜欢

全国站