(1)做几何题时候不会做辅助线
原因:对于几何模型认识不充分
解决方案:每一种基本的几何模型都有定义、性质和判定三方面,要将这三方面知识熟记于心。一般来说应用的过程是:判定是哪种模型→此模型有何性质→此性质能不能直接用→若不能,则作辅助线体现其性质。例如:暑假学的平行四边形模型→对角线互相平分,对边平行且相等,对角相等。等腰三角形模型→三线合一。倍长中线模型→有三角形一边中点,可以考虑倍长中线构造全等。还有梯形的的三类辅助线,都应该熟记。
(2)考虑问题不全面,不会进行分类讨论
解决方案:
1、注意几种经常需要分类讨论的知识点,就初二暑假的知识点而言,函数自变量取值的范围,一次函数的k,b的正负性,平方根的双重性,直角坐标系中点的坐标与线段长度的转化等等。
2、学会讨论方法,把每一种情况都写下来,然后分别解出每种情况下的结果。
3、注意分类之后的取舍,并不是所有情况都是正确答案,尤其是解分式方程和根式方程的时候,会出现增根,一定要检验。
(3)自信心不足,不敢下手
原因:
1、对于题型本身掌握不好,没思路;
2、有些想法,不知道是否正确,不敢动笔;
3、不会写过程;
4、会做,懒得写。后果:导致考试比作业还差。
解决方案:
1、问老师、对比类似的例题寻找相同之处;几何先找模型,在思考此种模型的性质特点以及辅助线做法。代数看过程,分析每一步的目的;
2、有想法一定要落实在笔头上。怕错写在草稿纸上,视觉带给我们的思路远比空想要多;
3、上课认真记笔记,将老师的解题过程详细的记录在本上,几何有模型,代数有步骤。多模仿老师的解题过程,慢慢熟练;
4、会做不代表能做对,很多题目的易错点只有在做后才会发现。很多丢分的题目往往是那些一看就会一坐就错的“简单题”;
5、有时候解题方法不是一下子就能想出来的,一步就能想出来,那就是完美主义理想。所以在没有明确思路的情况下,我们可以多尝试,一定可以找到正确的思路方式。