1、合并同类项
合并同类项,法则不能忘,只求系数和,字母、指数不变样。
2、恒等变
两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n
3、平方差公式
平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
4、完全平方
完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首尾括号带平方,尾项符号随中央。
5、因式分解
一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
6、代入口决
挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小中大)
7、单项式运算
加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
8、一元一次不等式解题的一般步骤
去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
9、一元一次不等式组的解集
大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
10、一元二次不等式、一元一次绝对值不等式的解集
大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
11、分式混合运算法则
分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
12、分式方程的解法步骤
同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。
13、最简根式的条件
最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
14、特殊点坐标特征
坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。
15、象限角的平分线
象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
16、平行某轴的直线
平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。
17、对称点坐标
对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
18、自变量的取值范围
分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
19、函数图像的移动规律
若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了
20、一次函数图像与性质口诀
一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。