规律28
条件不足时延长已知边构造三角形。
规律29
连接四边形的对角线,把四边形问题转化成三角形来解决问题。
规律30
有和角平分线垂直的线段时,通常把这条线段延长。可归结为角分垂等腰归。
规律31
当证题有困难时,可结合已知条件,把图形中的某两点连接起来构造全等三角形。
规律32
当证题缺少线段相等的条件时,可取某条线段中点,为证题提供条件。
规律33
有角平分线时,常过角平分线上的点向角两边做垂线,利用角平分线上的点到角两边距离相等证题。
规律34
有等腰三角形时常用的辅助线
⑴作顶角的平分线,底边中线,底边高线
⑵有底边中点时,常作底边中线
⑶将腰延长一倍,构造直角三角形解题
⑷常过一腰上的某一已知点做另一腰的平行线
⑸常过一腰上的某一已知点做底的平行线
⑹常将等腰三角形转化成特殊的等腰三角形------等边三角形
规律35
有二倍角时常用的辅助线
⑴构造等腰三角形使二倍角是等腰三角形的顶角的外角
⑵平分二倍角
⑶加倍小角
规律36
有垂直平分线时常把垂直平分线上的点与线段两端点连结起来。
规律37
有垂直时常构造垂直平分线。
规律38
有中点时常构造垂直平分线。
规律39
当涉及到线段平方的关系式时常构造直角三角形,利用勾股定理证题。
规律40
条件中出现特殊角时常作高把特殊角放在直角三角形中。
四边形部分
规律41
平行四边形的两邻边之和等于平行四边形周长的一半。
规律42
平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差。
规律43
有平行线时常作平行线构造平行四边形。
规律44
有以平行四边形一边中点为端点的线段时常延长此线段。
规律45
平行四边形对角线的交点到一组对边距离相等。
以上《2018中考数学常用几何辅助线规律汇总(3)》的内容,同学们可以做一些题目来验证一下。