一、线与角
1.两点之间,线段最短。
2.经过两点有一条直线,并且只有一条直线。
3.等角的补角相等,等角的余角相等。
4.对顶角相等
5.经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
6.(1)经过已知直线外一点,有且只有一条直线与已知直线平行。
(2)如果两条直线都和第三条直线平行,那么这两条直线也平行.
7.连接直线外一点与直线上各点的所有线段中,垂线段最短。
8.平行线的判定:
(1)同位角相等,两直线平行;
(2)内错角相等,两直线平行;
(3)同旁内角互补,两直线平行;
(4)垂直于同一条直线的两条的直线互相平行.
9.平行线的特征:
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
10.角平分线的性质:角平分线上的点到这个角的两边的距离相等.
角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.
11.线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.
线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.
二、三角形、多边形
12.三角形中的有关公理、定理:
(1)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;②三角形的一个外角大于任何一个与它不相邻的内角;③三角形的外角和等于360.
(2)三角形内角和定理:三角形的内角和等于180.
(3)三角形的任何两边的和大于第三边
(4)三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
13.多边形中的有关公理、定理:
(1)多边形的内角和定理:n边形的内角和等于(n-2)180.
(2)多边形的外角和定理:任意多边形的外角和都为360.
14.(1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分.
(2)轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
15.等腰三角形中的有关公理、定理:
(1)等腰三角形的两个底角相等.(简写成等边对等角)
(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成等角对等边)
(3)等腰三角形的三线合一定理:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称三线合一.
(4)等边三角形的各个内角都相等,并且每一个内角都等于60.
(5)三个角都相等的三角形是等边三角形。
(6)有一个角是60的等腰三角形是等边三角形。
16.直角三角形的有关公理、定理:
(1)直角三角形的两个锐角互余;
(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方;
(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.
(4)直角三角形斜边上的中线等于斜边的一半.
(5)在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半.
一、线与角
1.两点之间,线段最短。
2.经过两点有一条直线,并且只有一条直线。
3.等角的补角相等,等角的余角相等。
4.对顶角相等
5.经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
6.(1)经过已知直线外一点,有且只有一条直线与已知直线平行。
(2)如果两条直线都和第三条直线平行,那么这两条直线也平行.
7.连接直线外一点与直线上各点的所有线段中,垂线段最短。
8.平行线的判定:
(1)同位角相等,两直线平行;
(2)内错角相等,两直线平行;
(3)同旁内角互补,两直线平行;
(4)垂直于同一条直线的两条的直线互相平行.
9.平行线的特征:
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
10.角平分线的性质:角平分线上的点到这个角的两边的距离相等.
角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.
11.线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等.
线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.
二、三角形、多边形
12.三角形中的有关公理、定理:
(1)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;②三角形的一个外角大于任何一个与它不相邻的内角;③三角形的外角和等于360.
(2)三角形内角和定理:三角形的内角和等于180.
(3)三角形的任何两边的和大于第三边
(4)三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
13.多边形中的有关公理、定理:
(1)多边形的内角和定理:n边形的内角和等于(n-2)180.
(2)多边形的外角和定理:任意多边形的外角和都为360.
14.(1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分.
(2)轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
15.等腰三角形中的有关公理、定理:
(1)等腰三角形的两个底角相等.(简写成等边对等角)
(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简写成等角对等边)
(3)等腰三角形的三线合一定理:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合,简称三线合一.
(4)等边三角形的各个内角都相等,并且每一个内角都等于60.
(5)三个角都相等的三角形是等边三角形。
(6)有一个角是60的等腰三角形是等边三角形。
16.直角三角形的有关公理、定理:
(1)直角三角形的两个锐角互余;
(2)勾股定理:直角三角形两直角边的平方和等于斜边的平方;
(3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.
(4)直角三角形斜边上的中线等于斜边的一半.
(5)在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半.