题目
如图1,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点。
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由。
解答:
(1)抛物线解析式为y=-x2-2x+3;
(2)Q(-1,2);
下面着重探讨求第(3)小题中面积最大值的几种方法.
解法1
补形、割形法
几何图形中常见的处理方式有分割、补形等,此类方法的要点在于把所求图形的面积进行适当的补或割,变成有利于表示面积的图形。
方法一
如图3,设P点(x,-x2-2x+3)(-30).
方法二 如图4,设P点(x,-x2-2x+3)(-30).
(下略.)
解法2
铅垂高,水平宽面积法
如图5,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的水平宽(a),中间的这条直线在△ABC内部线段的长度叫△ABC的铅垂高(h),我们可得出一种计算三角形面积的另一种方法:S△ABC=1/2ah,即三角形面积等于水平宽与铅垂高乘积的一半。
根据上述方法,本题解答如下:
解:如图6,作PEx轴于点E,交BC于点F.
设P点(x,-x2-2x+3)(-30).
点P坐标为(-3/2,15/4)
解法3
切线法
若要使△PBC的面积最大,只需使BC上的高最大.过点P作BC的平行线l,当直线l与抛物线有唯一交点(即点P)时,BC上的高最大,此时△PBC的面积最大,于是,得到下面的切线法。
解 如图7,直线BC的解析式是y=x+3,过点P作BC的平行线l,从而可设直线l的解析式为:y=x+b.
=27/8
解法4
三角函数法
本题也可直接利用三角函数法求得.
解:如图8,作PEx轴交于点E,交BC于点F,作PMBC于点M.
设P点(x,-x2-2x+3)(-30),
则F(x,x+3).
从以上四种解法可以看到,本题解题思路都是过点P作辅助线,然后利用相关性质找出各元素之间的关系进行求解。
上一篇: 初中数学,贯穿三年学习的9个经典解题法
下一篇: 中考数学这几个考点一定要吃透